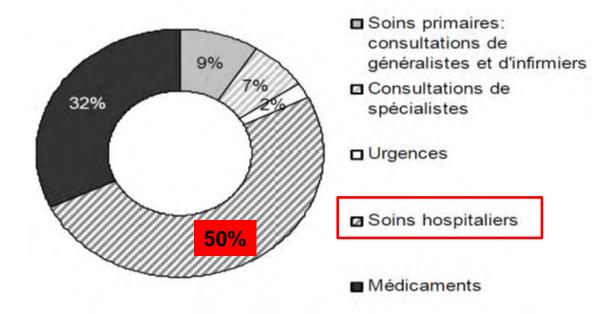


Données récentes tabac/cannabis et pathologies cardiovasculaires

Dr Guillaume CLERFOND
DIU de tabacologie
20/05/2016

	Nb. de décès attribuables au tabac	
	Hommes	Femmes
Cancers	30 100	1 400
(poumon)	(17 200)	(700)
Maladies cardiovasculaires	13 000	700
Maladies respiratoires	10 200	800



Problème de santé publique

Les maladies cardiovasculaires :

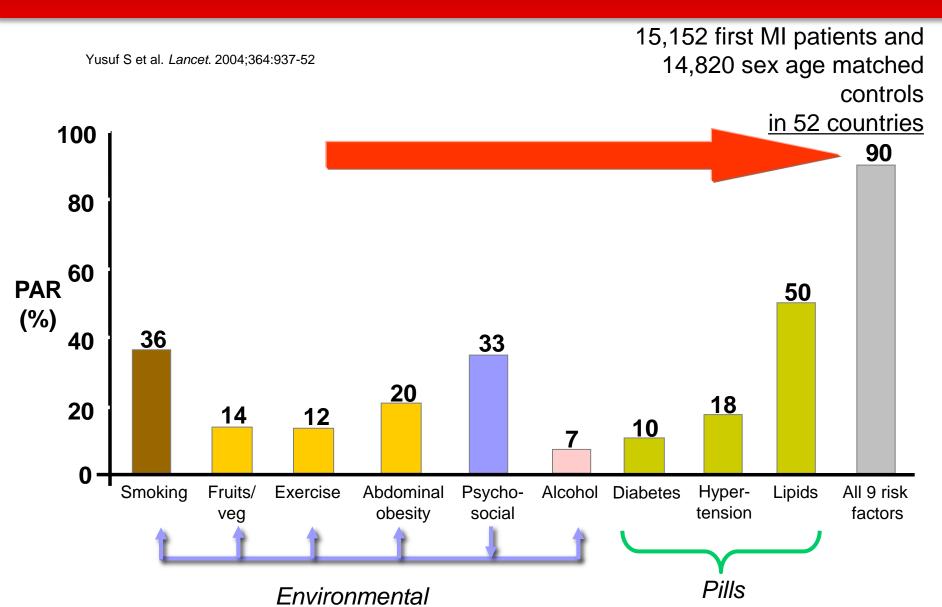
Enjeu de santé publique

- 2,2 millions de personnes en ALD 100%
- 17,9 milliards d'euros dépensés en 2007

Prévention

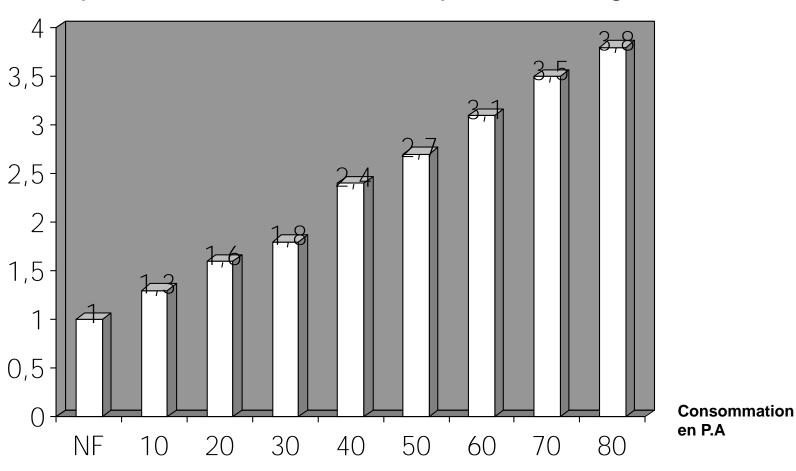
OMS = "75% des MCV sont évitables par un changement de style de vie"

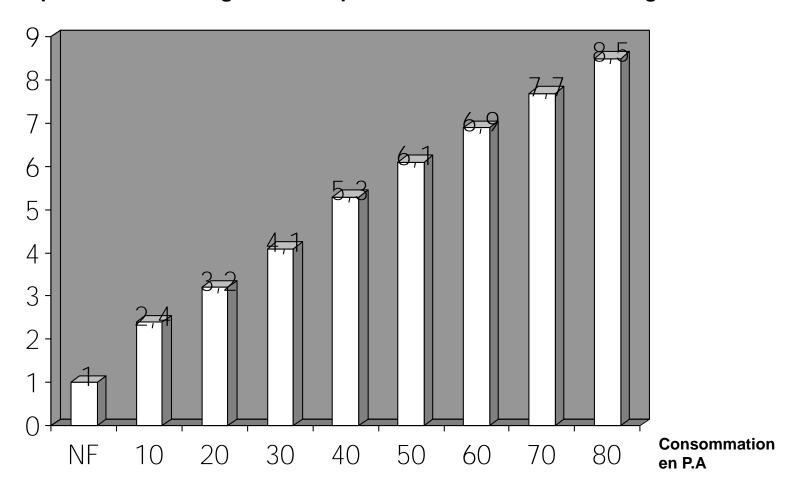
Problème de santé publique


Tabagisme et dépenses pour la société de l'ordre de 3% du PIB

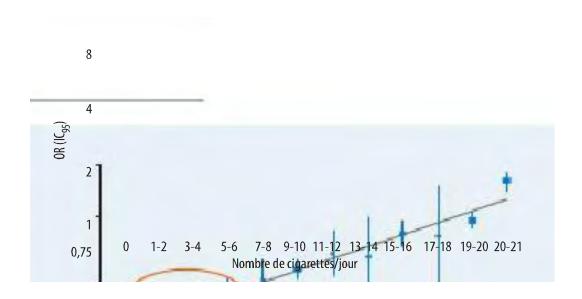
Les dépenses : les soins médicaux >> la prévention.

L'ensemble des fumeurs coûte 772 euros par habitant et par an.

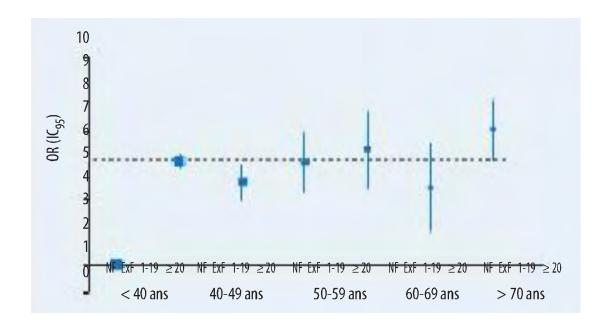

OFDT, 2005



Risque de mourir d'une maladie cardiaque selon le Tabagisme



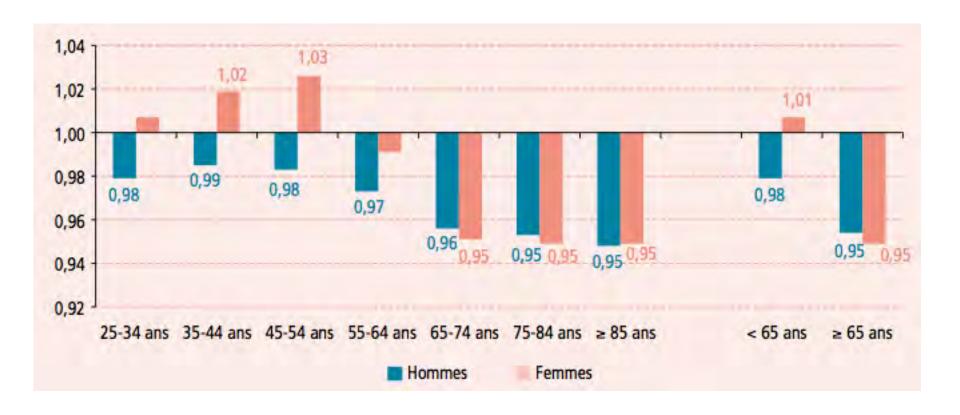
Risque de décès d'origine cardiaque avant 45 ans selon le Tabagisme


Risque d'infarctus en fonction du nombre de cigarettes par jour

Même une faible consommation journalière augmente le risque d'IDM

Risque d'infarctus en fonction du nombre de cigarettes par jour Et par tranches d'âge

Facteur de risque principal chez les jeunes


L'arrêt du tabagisme tend à ramener le risque à celui du non fumeur

Le tabagisme n'est plus considéré comme un FDR après 3 ans de sevrage

Évolution

Variation des hospitalisations pour infarctus entre 2002 et 2008 (régression de Poisson)

Femmes, tabac...

85% des femmes qui font un IDM sont des fumeuses Registre FAST-MI : augmentation du tabagisme et de l'obésité explique l'augmentation des IDM chez les femmes

femmes + jeunes :

1995 : 3,7% des femmes qui font un IDM ont – 50 ans

2011: 11,6% ont – de 50 ans

... **Et pilule :** (RR X 20)

Perte de la protection par les oestrogènes avant la ménopause

Tabagisme passif

3000 à 5000 décès par an, dont 2/3 de maladies cardio vasculaires.

Risque d'infarctus proche de celui du tabagisme actif : exposition pendant 7 h/sem augmente le risque de 24% exposition >22 h/sem (travail avec fumeur) augmente de 62%, = fumer entre 1 et 9 cigarettes/jour

Interheart, Teo KK, Lancet 2006

Physiopathologie

Constituants du tabac

Tabac = plus de 3000 composants

- Nicotine
- Monoxyde de carbone (CO)
- Goudrons
- Composants gazeux :
 - ⇒ stress oxydant

Physiopathologie

Toxicité cardiovasculaire du tabac démontrée +++

- Mécanismes impliqués = multiples et complexes
- Tabac = doublement responsable
 - complications aiguës (IDM, mort subite, AVC ...)
 - complications chroniques : accélération athérosclérose

Physiopathologie

Athérosclérose

- Processus inflammatoire chronique
- Évolution en plusieurs stades

Dysfonction endothéliale

Stade précoce de l'athérosclérose Intérêt du diagnostic, dépistage Intervention = diminution du risque de MCV

Endothélium Limitante elastique interne Adventice Limitante élastique externe

Endothélium vasculaire

- Hémostase
- Prolifération cellulaire
- Inflammation
- Tonus vasculaire (rôle du NO)

Complications aiguës et chroniques

<u>Etude de Framingham</u> :

777 IDM et mort subite de cause cardiaque

Tabac : accélère le processus d'athérosclérose,

prédispose à la survenue d'accidents aigus prématurés

Complications aiguës

Définition:

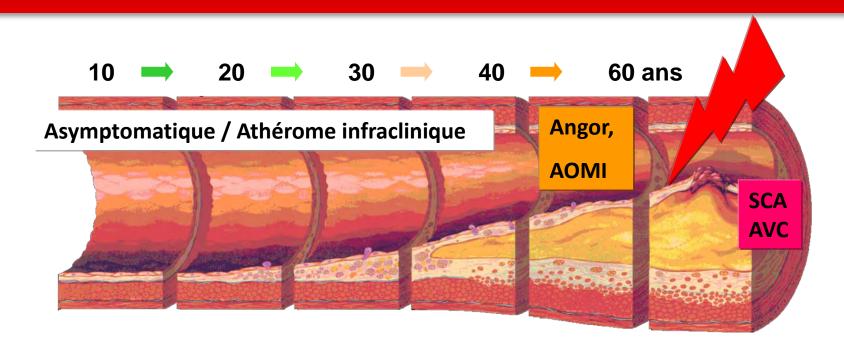
complications survenant pendant ou dans les minutes

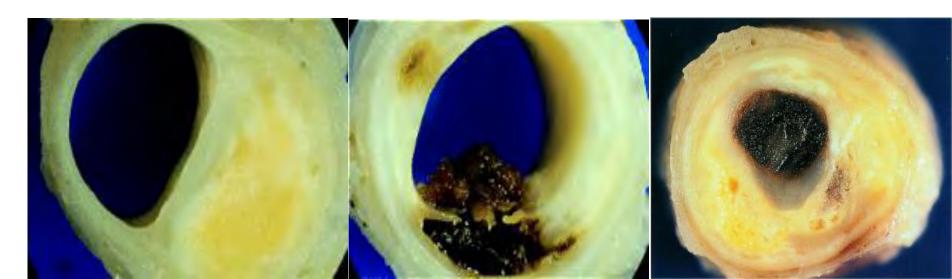
suivant la consommation d'une cigarette

Mécanismes impliqués dans les effets aigus du tabac :

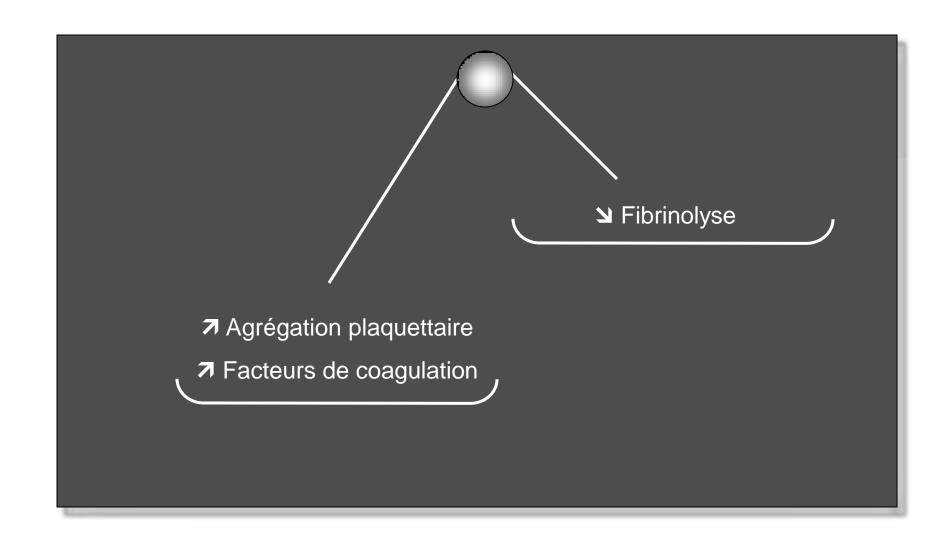
- Induction d'un état d' <u>hypercoagulabilité</u>
- → Travail cardiaque
- → taux monoxyde de Carbone couplé à l' Hb
- Libération des catécholamines
- Vasoconstriction coronaire

Etat d'hypercoagulabilité


- Mécanisme prépondérant dans la survenue d'accidents aigus
- Risque relatif chez fumeur d' IDM ou mort subite > angor chronique
- Au moment de l' IDM : fumeurs / non fumeurs
 - plus jeunes (10 ans de moins!),
 - moins de FR associés,
 - moins d'anomalies coronaires.


⇒ pronostic de l'IDM thrombolysé meilleur chez fumeur / non fumeur

Importance majeure de la thrombose dans la survenue d'accidents cardiovasculaires aigus chez le fumeur


Complications aiguës

Etat d'hypercoagulabilité

Augmentation du travail cardiaque

- fumée de cigarette
- 7 fréquence cardiaque
- 7 pression artérielle
- augmentation résistances vasculaires périphériques
 - (distensibilité et compliance artérielles)
 - 7 travail cardiaque ⇒ favorise ischémie myocardiqueen ≥ apport / besoins

Effets hypoxiques

- monoxyde de carbone couplé à l' Hb = carboxyhémoglobine (HbCO) Taux d' HbCO = 5-10 % chez fumeur (0.5-2 % non-fumeur)
 - ≥ capacité de transport en O₂
 - **7** affinité de l'Hb pour O_2 ⇒ **1** libération O_2 en périphérie

effet compensé en chronique par **7** érythropoïèse, **7** masse globulaire mais délétère en aigu (**>** seuil ischémique)

Libération de catécholamines

- fumée de cigarette ⇒ libération de catécholamines (Noradrénaline)
 - vasoconstriction périphérique (cutanée, splanchnique)
 - stimulation cardiaque β-adrénergique

augmentation du travail du myocarde (FC, PA) effet arythmogène +++ (risque de mort subite)

Vasoconstriction coronaires

fumée de cigarette ⇒ vasoconstriction des artères systémiques, coronaires épicardiques chez certains

cigarette favorise le spasme coronarien

ex: IDM sur coronaires angiographiquement saines constatations coronarographiques

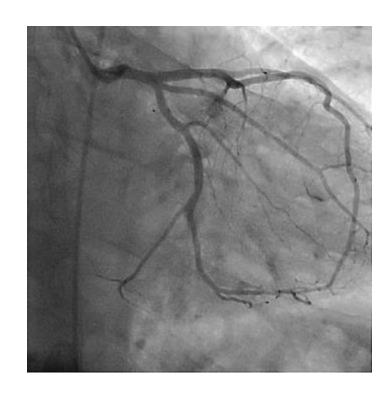
mécanisme = dysfonction endothéliale induite par le tabac

ATCD = 0

FRCV = Tabac 40 Paquets-Année

HDLM =

SCA ST- Tropo+ en Avril 2010


Coro: bon VG

discrètes irrégularités réseau gauche

spasme Cx levé par Risordan® intracoronaire

Angor spastique

Cas clinique

Mme S. Josiane, 50 ans

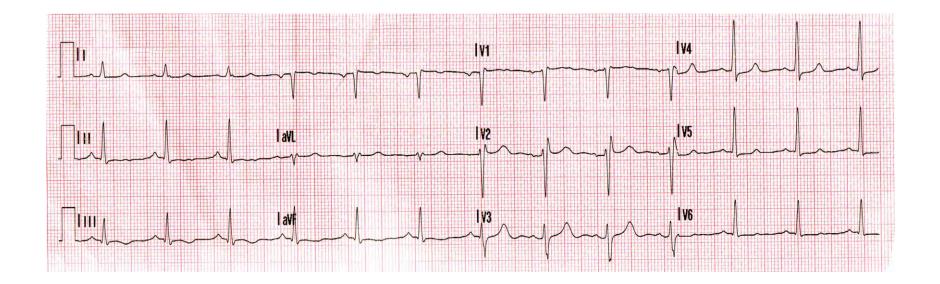
Sort sous traitement:

statine, aspirine, plavix®, nitrés, inhibiteurs

calciques

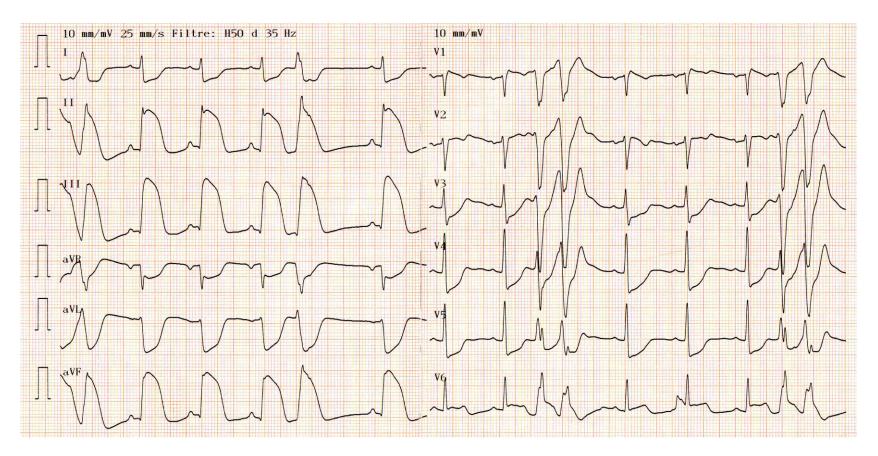
Natispray®

Evolution...

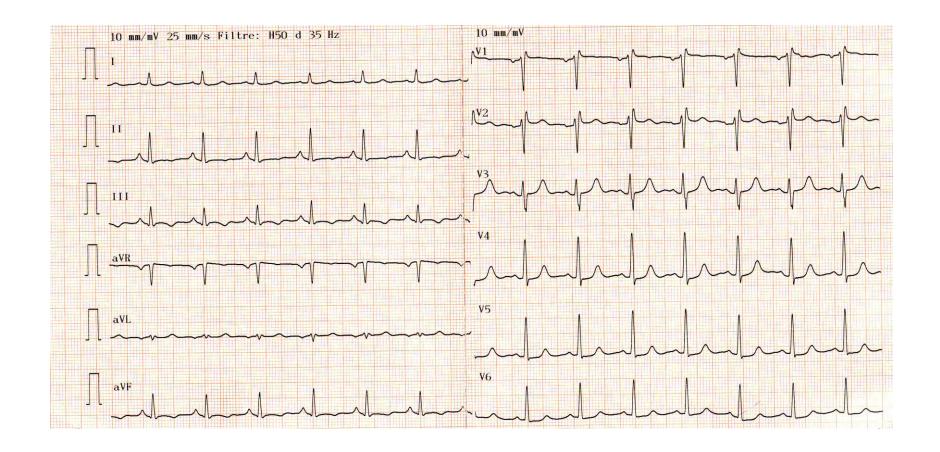

Observance aléatoire Reprise du Tabac.....

1^{er} Novembre 2010 au réveil, douleur thoracique...

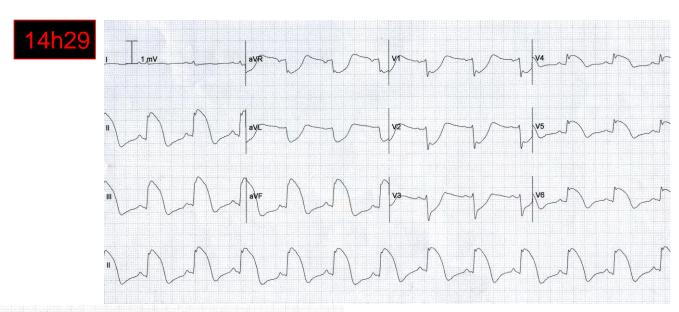
Arrêt circulatoire ... massage par mari pendant 10mn


Arrivée des pompiers : FV réduite au 3ème CEE

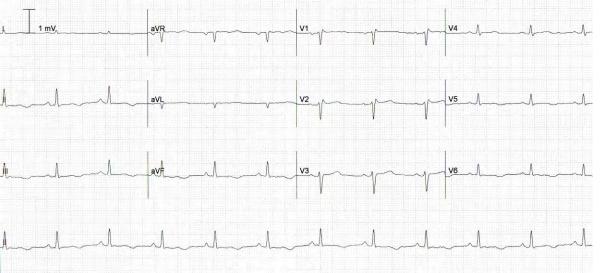
ECG post-critique


Sédatée, intubée, ventilée Admise en réa polyvalente où est provoquée une hypotherm

ECG sous hypothermie


Allo USIC, fax ECG Mise sous risordan® IV (vitesse 12mg/h!) Transfert en salle de cathétérisme

ECG admission en salle de cathétérisme



=> Spasme coronaie modéré levé sous Risordan intra coronaire

Surveillance en USIC, intubée ventilée, nitrés IV

Optimisation du ttt médical:

Risordan 12mg/h Ikorel 10mg x 2/j Chronadalate 30mg/j Tahor 80mg/j Kardegic 160mg/j Plavix 600mg puis 75mg/j

Evolution favorable:

- accalmie de l'orage spastique en 12h
- réveillée, sevrée du respirateur en 72h
- aucune séquelle neurologique
- aucune séquelle myocardique (FE=70%)

Poursuite traitement antispastique synergique Sevrage tabagique

Pas de nouvel évènement

Complications chroniques

Développement et accélération de l'athérosclérose

Mécanismes de l'athérogénèse induite par le tabac :

- Action thrombogène
- Toxicité endothéliale
- Perturbation des lipides
- stress oxydant
- Activation des neutrophiles

Action thrombogène

Plusieurs mécanismes impliqués :

1) 7 nb et activité des plaquettes :

→ agrégation plaquettaire, → adhésivité
démontrées in vitro, majorées in vivo par dysfonction endothéliale

☑ demi-vie des Pq

7 thromboxane A2 et prostacycline

☐ sensibilité aux antiagrégants

2) <u>activation de la coagulation</u>:

→ fibrinogène circulant, → hématocrite, polynucléose → → viscosité sanguine

→ taux et activité des facteurs de coagulation

3) ≥ thrombolyse endogène

Toxicité endothéliale

Dysfonctions endothéliales provoquées par le tabac :

- absence de réponse agents vasodilatateurs
- liées à l'importance de la consommation tabagique
- réversibles à l'arrêt du tabac

ex: > relaxation endothélium-dépendante sur artères ombilicales de nouveaux nés de mères fumeuses

Anomalies lipidiques

Bilan lipidique du fumeur :

→ Cholestérol total, VLDL, TG plus élevés

¥ HDL, Apo 1

→ LDL oxydé ⇒ cellules spumeuses

Effets néfastes partiellement réversibles à l'arrêt du tabac (intrication tabac- alimentation ?)

Mécanismes : erreurs diététiques associées au tabagisme ?

action anti-œstrogène du tabac?

lipolyse favorisée par les catécholamines?

Stress oxydant

Fumée de cigarette ⇒ 7 stress oxydant

- → oxydant exogène (fumée de cigarette)
- → oxydant endogène (libérés par cellules inflammatoires en réponse à l'agression toxique)
- ∠ vitamine C anti-oxydante

Stress oxydant:

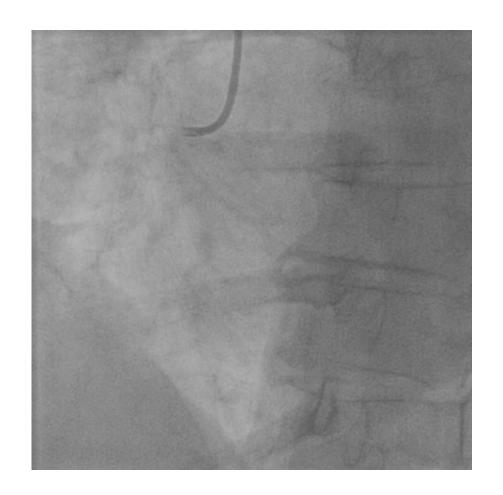
- s'oppose à l'action vaso-relaxante du NO
- favorise athérogénèse (oxydation du LDL)

Activation des neutrophiles

Fumeur: 7 concentration de neutrophiles circulants

→ adhérence au cellules endothéliales

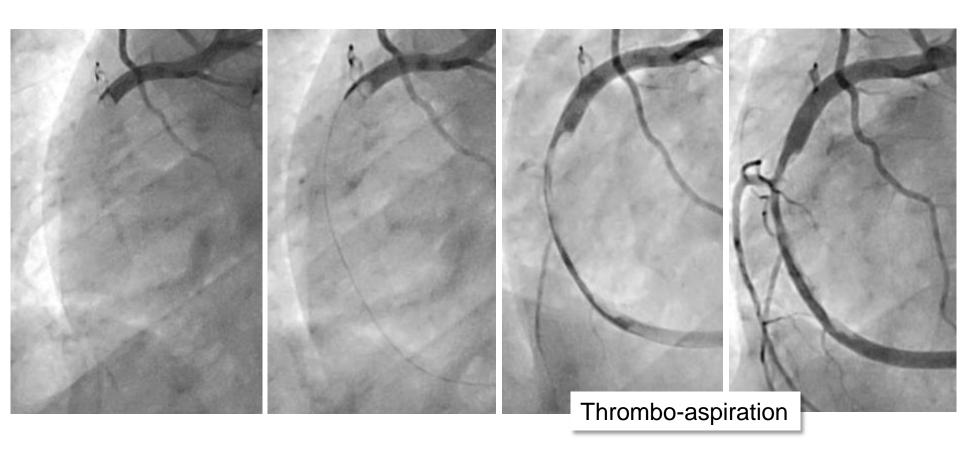
Participe au développement de l'athérosclérose

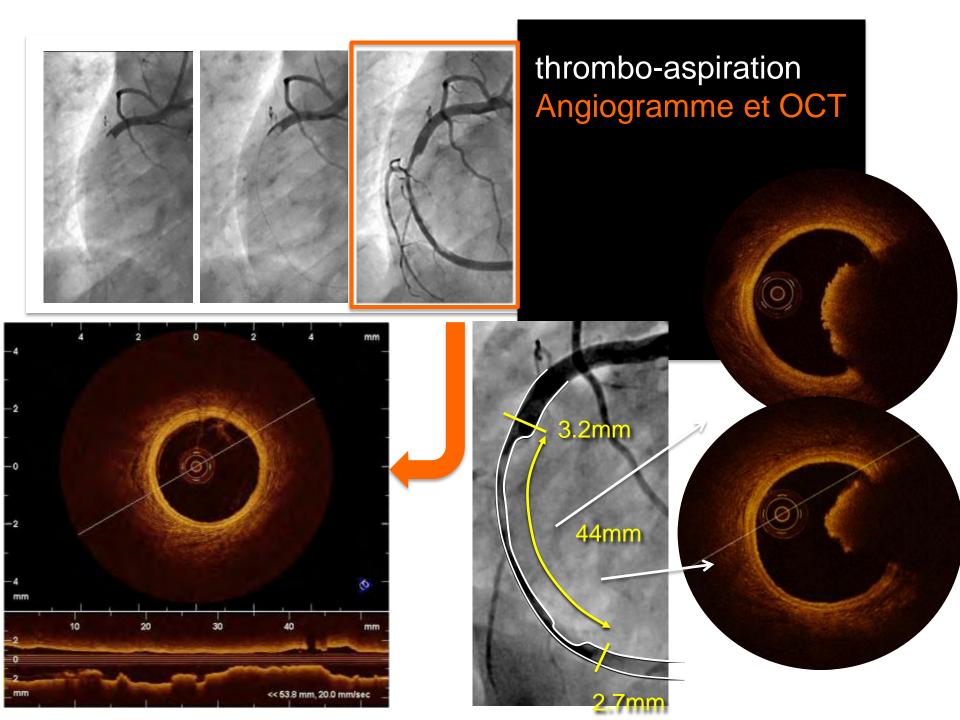

Effet supprimé par vitamine C : rôle du stress oxydatif dans les interactions cell. Inflammatoires-endothélium ?

Tabac et pathologies cardiovasculaires

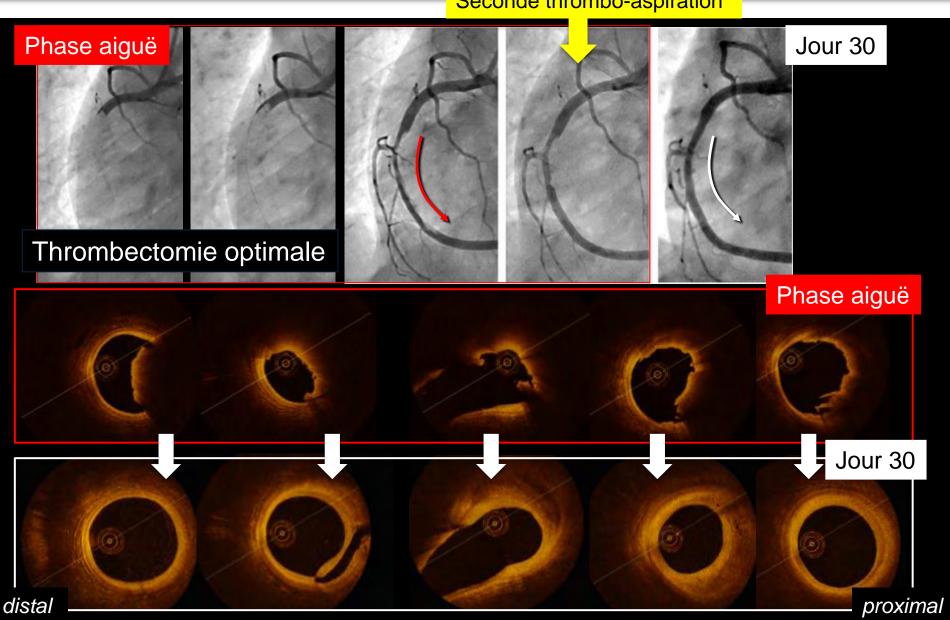
- Maladie coronaire
- Artériopathie oblitérante des Membres inférieurs (AOMI)
- Accidents vasculaires cérébraux
- Maladie thrombo-embolique

Rupture de plaque

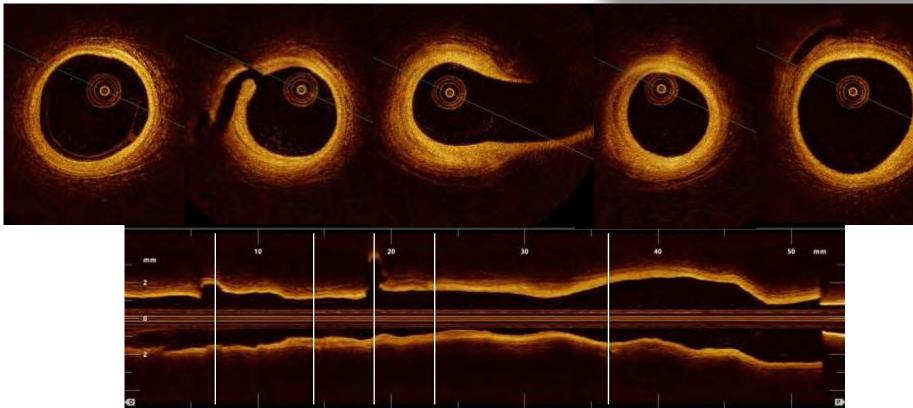




Mr B, homme de 43 ans


- Facteurs de risque CV : tabac
- Infarctus pris en charge précocément dans la première heure

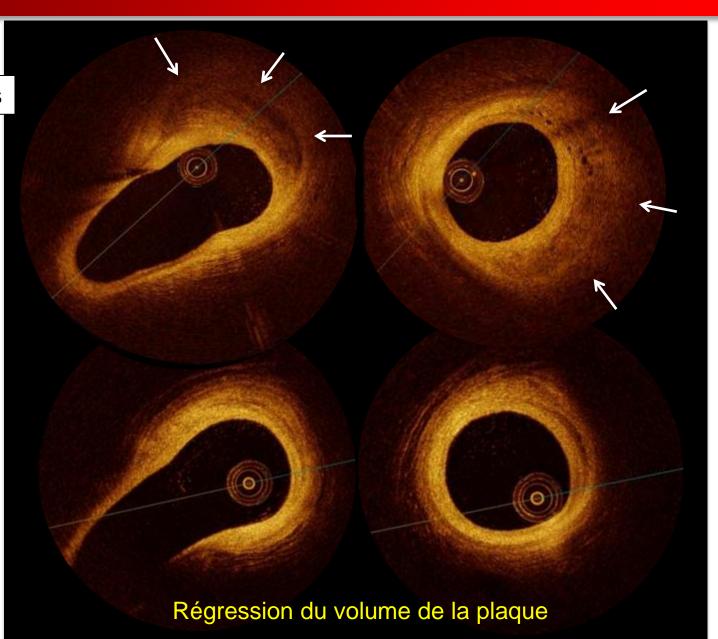
Seconde thrombo-aspiration

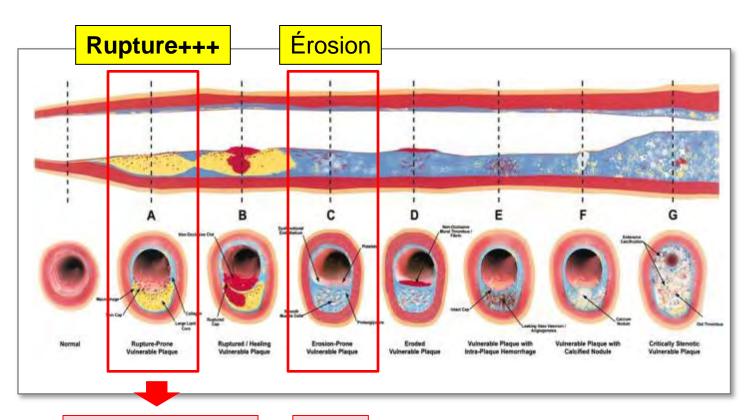


Mr B, 43 year-old male,

1 year later

- Optimal medical treatment
- Stop smoking
- Remains asymptomatic...




Après 1 mois

Après 1 an

Physiopathologie et traitement des SCA

70% des SCA

25%

Tabac et maladie coronaire

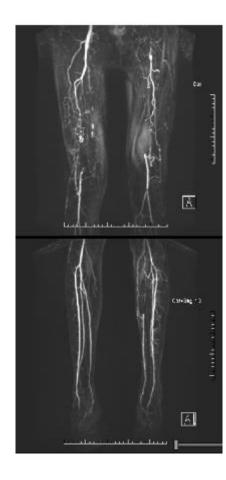
Poursuite du tabagisme :
Poursuite de l'évolution de la coronaropathie

= + d'angor, de troubles du rythme graves, de nouvelles hospitalisations ...

Après chirurgie de pontage ou angioplastie coronaire : tabagisme 7 risque d'IDM, de décès, de n^{elles} revascularisations

Tabac et artériopathie périphérique

> 80 % des AOMI sont des fumeurs


Facteurs de risque par ordre d'imputabilité :

- Tabac RR d'AOMI = 2 à 8

- Diabète 2 à 4

- HTA 1 à 4

- Hypercholestérolémie 1 à 2

Risque X20 à X30 d'AOMI stade IV quand association au diabète

Tabac et artériopathie périphérique

<u>Tabagisme actif:</u>

Vitesse de progression de l'anévrysme Aorte Abdominale **X2** Perméabilité des pontages à 10 ans diminuée de 60 à 90 %

Maladie de Buerger :

Thromboangéite oblitérante du sujet jeune (<40 ans) AOMI avec atteinte distale

<u>Arsenal thérapeutique</u>:

- encourager la marche
- anti-agrégants plaquettaires, vaso-actifs
- arrêt du tabagisme

AOMI et sevrage tabagique

Arguments:

- ralentir évolution de la maladie (symptômes, périmètre de marche, douleur de décubitus)
 - ☐ risque d'amputation
 - ☐ risque d'impuissance
 - ☐ risque de compromettre le résultat d'une revascularisation

(poursuite tabac x 3 risque occlusion ponts aorto-bifémoraux)

- prendre conscience d'une maladie générale (pronostic coronarien, cérébral...)
- risques extracardiaques +++

Tabac et AVC

Rôle moins important du tabac mais non négligeable

Facteur de risque prépondérant = HTA

HTA ++

RR d'AVC

= 4

Tabac

= 1.5

Risque d' AVC lié au tabac surtout chez sujet jeune < 55 ans (RR >2)

Risque plus important chez la femme

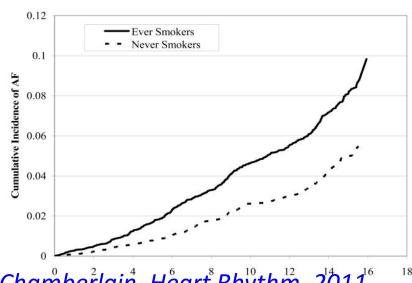
Risque **7** avec la consommation tabagique

Tabac et AVC

Mécanismes en cause :

Sténose des vaisseaux carotidiens :

emboles fibrino-cruoriques ou calcaires

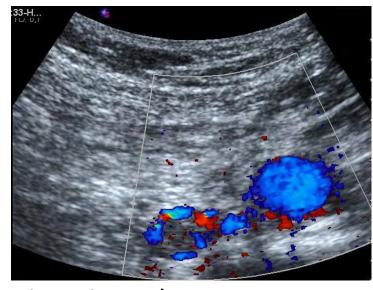

occlusion thrombotique d'une sténose carotidienne

= athéroslérose et tabac

Thrombophlébite cérébrale

= thrombose et tabac

AC/FA et cardiopathies emboligènes


Chamberlain, Heart Rhythm, 2011

Tabac et maladie thromboembolique

Tabac non retenu classiquement parmi les FDR de maladie thromboembolique

Tabac = rôle thrombogène

Responsabilité synergique dans certaines situations de thrombophilies (acquises ou constitutionnelles)

ex : risque majoré tabac + pilule

Politiques de prévention

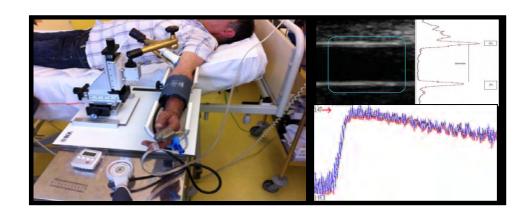
Les politiques d'interdiction de fumer dans les lieux publics

admissions aux urgences pour menace d'IDM diminution de **11% en Italie** de **17% en Ecosse**.

Arrêt du tabac et prévention primaire

Des effets rapides :

Mesurés avec des marqueurs sensibles


Diminution de la rigidité artérielle et de la pression centrale

Roux A., Cardiology 2010

Amélioration de la fonction endothéliale

= diminution du risque CV global

Arrêt du tabac et prévention secondaire

Mortality Risk Reduction Associated With **Smoking Cessation in Patients With Coronary Heart Disease**

A Systematic Review

Julia A. Critchley, MSc, DPhil

Simon Capewell MD, FRCPE

JAMA, July 2, 2003-Vol 290, No. 1

Arrêt du tabac et prévention secondaire

Figure 2. Pooled Relative Risks of Mortality Reduction When Patients With CHD Stop Smoking: Random-Effects Meta-analysis of All 20 Studies

Study	Ceased Smoking		Continued Smoking							
	Patients, No.	Deaths, No.	Patients, No.	Deaths,	Weight, %	RR (95% CI)	Ceased Smoking		Continued Smoking	
Aberg et al,41 1983	542	110	443	142	8.3	0.63 (0.51-0.79)				
Baughman et al,51 1982	45	9	32	14	1.8	0.46 (0.23-0.92)			-	
Bednarzewski et al,36 1984	455	136	555	205	9.3	0.81 (0.68-0.97)			-	
Burr et al,38 1992	665	27	521	41	3.5	0.52 (0.32-0.83)		-		
Daly et al,43 1983	217	-80	157	129	9.0	0.45 (0.37-0.54)			İ	
Greenwood et al, 19 1995	396	64	136	29	4.5	0.76 (0.51-1.12)			-	
Gupta et al,3/ 1993	173	56	52	24	4.9	0.70 (0.49-1.01)			4	
Hallstrom et al, 46 1986	91	34	219	104	6.1	0.79 (0.58-1.06)			+	
Hasdai et al.42 1997	435	41	734	97	5.2	0.71 (0.50-1.01)			+	
Hedback et al,52 1993	83	-31	74	40	5.2	0.69 (0.49-0.98)			4	
Herlitz et al,50 1995	115	20	102	31	3.2	0.57 (0.35-0.94)		-	-[
Johansson et al,7 1985	81	14	75	27	2.6	0.48 (0.27-0.84)			1	
Perkins and Dick,47 1985	52	9	67	30	2.1	0.39 (0.20-0.74)				
Salonen,46 1980	221	26	302	60	4.0	0.59 (0.39-0.91)			- [
Sato et al, ⁸ 1992	59	5	28	7	0.9	0.34 (0.12-0.97)	_			
Sparrow and Dawber, 48 1978	56	10	139	40	2.3	0.62 (0.33-1.15)			+	
Tofler et al,49 1993	173	14	220	37	2.5	0.48 (0.27-0.86)		_		
Van Domburg et al,39 2000	238	109	318	202	9.8	0.72 (0.61-0.85)			1	
Vlietstra et al,40 1986	1490	223	2675	588	10.4	0.68 (0.59-0.78)				
Voors et al,44 1996	72	26	95	37	4.4	0.93 (0.62-1.38)		_	-	
Overall	5659	1044	6944	1884	100.0	0.64 (0.58-0.71)				
							0.1		1.0	· creen
								RR (9	95% CI)	

CHD indicates coronary heart disease; RR, relative risk. χ^2 for heterogeneity, P = .009.

Arrêt du tabac et prévention secondaire

Figure 4. Pooled Relative Risks of Reduction in Nonfatal Myocardial Reinfarction When Patients With CHD Stop Smoking: Random-Effects Meta-analysis of 8 Studies

Study	Ceased Smoking		Continued Smoking						
	Patients, No.	Deaths, No.	Patients, No.	Deaths, No.	Weight, %	RR (95% CI)		Ceased Smoking	Continued Smoking
Aberg et al,41 1983	542	104	441	127	34.4	0.67 (0.53-0.84)			
Herlitz et al,50 1995	115	10	102	9	4.2	0.99 (0.42-2.33)		-	
Johansson et al,7 1985	81	18	75	21	9.6	0.79 (0.46-1.37)			
Perkins and Dick,47 1985	52	6	67	2	1.3	3.87 (0.81-18.37)		-	
Sato et al, ⁸ 1992	59	0	28	2	0.4	0.10 (0.00-1.95)			
Sparrow and Dawber, 48 1978	56	8	139	26	5.7	0.76 (0.37-1.58)			_
Vlietstra et al,40 1986	1490	106	2675	302	36.9	0.63 (0.51-0.78)			
Voors et al,44 1996	72	11	95	27	7.5	0.54 (0.29-1.01)		-	
Overall	2467	263	3622	516	100.0	0.68 (0.57-0.82)			
							0.1	1 1 1 1 1 1 1 1	.0 10
								RR (95% CI)	

CHD indicates coronary heart disease; RR, relative risk.

Sevrage et risque CV

```
Intérêt des moyens de sevrage :
```

Absence de pic de nicotine

moindre activation sympathique

(palpitations et hypertension)

Absence de cofacteur nocif (CO, carcinogène, ...)

Sevrage et risque CV

Substituts nicotiniques

Efficacité et sécurité d'emploi démontrées

risque faible << bénéfices escomptés du sevrage

pas d'augmentation significative des accidents CV

Pas de complications en USIC

Meine et al. Am. J. cardio, 2005

• Surdosage en nicotine :

fortes doses: hypotension, trouble du rythme, choc

Sevrage et risque CV

• Cigarette électronique :

We found that the e-cigarette vapours contained some toxic substances.

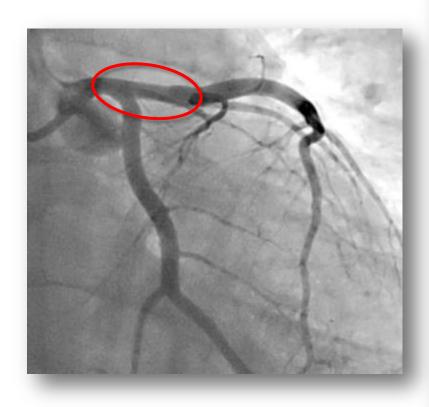
The levels of the toxicants were **9-450 times lower** than in **cigarette smoke** and were, in many cases, comparable with trace amounts found in the reference product.

Goniewicz ML et al., 2013, Tob Control.

Pas de données sur e-cigarette et risque CV hormis les effets nicotiniques (présence de pics de nicotine?)

Cannabis et risque CV

Mr C. 26 ans, Tabac 10 PA Cannabis, Cocaïne Angioplastie primaire H2 SCA ST+ antérieur, Killip 1 Thrombo-aspiration

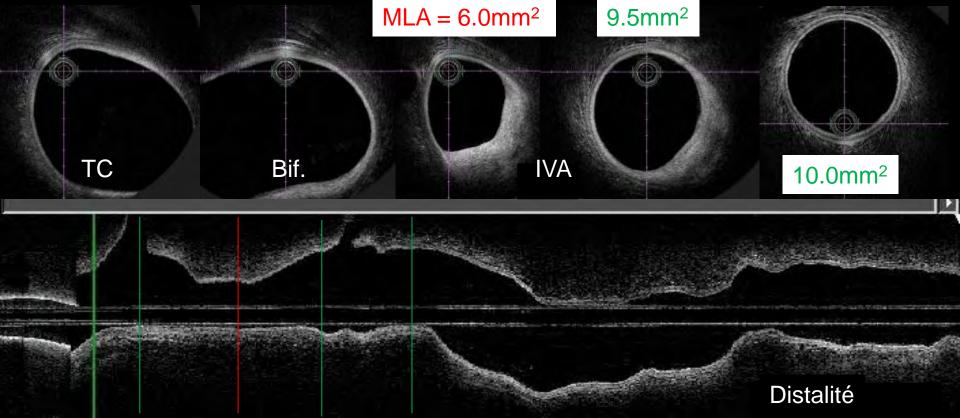


Cannabis et risque CV

Mr C. 26 ans

Contrôle à J30

FE=60%, asymptomatique



Mr C. 26 ans

Contrôle à J30

FE=60%, asymptomatique

Cannabis

Rôle exact difficile à définir car association quasi-systématique : au tabac

à d'autres substance psycho-actives

Mécanisme proche de la physiopathologie du tabac

Rupture de plaque ou érosion thrombotique + vasoconstriction

Mais retard diagnostic fréquent :

augmentation du seuil de douleur

« population ne pouvant pas faire un IDM »

Conclusion

Risque majoré dès la première cigarette

7 de l'incidence des IDM chez les femmes jeunes

Principal facteur de risque CV chez les jeunes

Effets précoces du sevrage

Quel que soit la méthode de sevrage

Attention : cannabis et infarctus « juvénil »

Données récentes tabac/cannabis et pathologies cardiovasculaires

Dr Guillaume CLERFOND
DIU de tabacologie
20/05/2016